Electrochemical Deacetylation of 1,3-Dicarbonyl Compounds

Kazuo Fujimoto, † Hirofumi Maekawa, Yoshiharu Matsubara, † and Ikuzo Nishiguchi*
Osaka Municipal Technical Research Institute, 1-6-50, Morinomiya, Jyoto, Osaka 536
† Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka 577

(Received October 30, 1995)

Mild deacetylation of 1,3-dicarbonyl compounds was achieved by halonium-ion mediated electrolysis. In this reaction, the supporting electrolyte including sodium halide NaX (X = Cl or Br) was essential since the reaction proceeded through substitution by a halonium ion, generated electrochemically at anode, on active methine carbons followed by base-catalyzed deacetylation, and was terminated by reductive dehalogenation of the formed α -halo carbonyl compounds at cathode.

In our continuing studies on halonium ion-mediated electrolysis of carbonyl compounds, electrochemical haloform reaction was found to take place when a variety of methyl ketones were subjected to electrolysis in a NaBr-MeOH system.¹

In this study, the electrolysis of 1,3-diketones and β -ketoesters was carried out under the similar conditions to give quite different compounds, deacetylated products. Although it is well-known that hydrolysis of β -ketoesters easily accompany with decarboxylation, 2 efficient removal of an acetyl group is rare, and is considerably useful in organic synthesis.

On the other hand, it was reported by Torii et al. that electrolysis of 1, 3-dicarbonyl compounds in CH₂Cl₂ containing Et₄NBr and McONa gave only α -brominated products at active methylene carbons. In this electrochemical reaction, however, a halide ion was reproduced by cathodic reduction of deacetylated mono-halogenated compounds generated in situ., and was electrochemically re-oxidized to a halonium ion which played an important role as a mediator.

R¹-CH-R² Electrolysis,
$$\overset{+}{C}$$
 - $\overset{-}{C}$
COCH₃ $\overset{+}{R}$ 3OH - NaX

1a-i 4.0 F/mol 2a-i

R² = COOCH₃, COOC₂H₅, COCH₃

It is sufficient to pass 4.0F/mol of electricity in the presence of 1.0 eq. of NaBr as a mediator to complete the reaction.⁴ Use of NaBr4 instead of NaBr as a supporting electrolyte resulted in the almost quantitative recovery of the starting compound.⁵

Table 1. Deacetylation of acetoacetates and acetylacetones

Entry	R ¹	R ²	NaX (eq)	Yield (%)
a	$C_6H_5CH_2$	COOCH ₃	NaBr (1.0)	89
b	$C_6H_5CH_2$	COOC ₂ H ₅	NaBr (1.0)	92
с	C_6H_{13}	$COOCH_3$	NaBr (1.0)	88
d	$cycloC_6H_{11}$	COOCH ₃	NaBr (1.0)	91
e	cycloC ₆ H ₁₁	$COOC_2H_5$	NaBr (1.0)	94
f	C_4H_9	COOCH ₃	NaBr (1.0)	85
g	$C_6H_5CH_2$	COCH ₃	NaCl (0.5)	89
h	$n-C_4H_9$	$COCH_3$	NaCl (0.5)	85
i	$n-C_6H_{13}$	COCH ₃	NaCl (0.5)	81

Figure 1. Relationship of passed electricity and products.

Electrolysis of a variety of α -substituted acetoacetates and acetylacetones under the similar conditions gave the corresponding deacetylation products in excellent yields as shown in Table 1. In the case of acetylacetones, use of NaCl as a supporting electrolyte in methanol brought about selective electrochemical deacetylation, while rearranged products were also obtained in some amounts as the by-products in a NaBr-MeOH system.

Product distribution as a function of amount of passed electricity clearly showed formation of deacetylated α -bromoesters as intermediates, 7 suggesting the fact that this reaction was a halonium-mediated paired electrolysis. 8

The following reaction mechanism would be proposed as shown below.

R-CHCO₂Et
$$\xrightarrow{R^3OH}$$
 RCH₂CO₂Et \xrightarrow{Br} \xrightarrow{Anode} \xrightarrow{P} \xrightarrow{Anode} \xrightarrow{P} \xrightarrow{P} \xrightarrow{P} $\xrightarrow{R-C-CO_2Et}$ $\xrightarrow{R^3OH}$ \xrightarrow{R} \xrightarrow{R}

The reaction was initiated by substitution of a methine proton by a bromonium ion, generated electrochemically at anode, on active methine carbons, followed by deacetylation catalyzed by sodium methoxide formed from electrogenerated sodium. The formed deacetylated $\alpha\text{-bromo}$ esters were then subjected to electro-reductive dehalogenation at cathode to give the final products.

 $\alpha\textsc{-Substituted}$ acyl acetates (4) possessing a chlorine atom as a leaving group within the same molecule were selectively transformed to the corresponding cyclization products (5) in a good yield.

The present anodic deacetylation is useful in organic synthesis. Thus, the electrolysis of $\alpha\text{-carboethoxycycloalkanones}$, prepared readily by carboethoxylation of cyclic ketones, under the similar conditions led to facile ring opening to give α , $\omega\text{-dicarboxylates}$ in satisfactory yields. Retro-Dieckmann condensation was reported to take place for only tetrasubstituted 1, 3-dicarbonyl compounds such as $\alpha\text{-alkyl-}\alpha\text{-carboalkoxy-cyclopentanones}, 10$

$$\begin{array}{c|c} CO_2Et & \xrightarrow{Electrolysis, C-C} \\ (CH_2)_n & \hline \\ 6 & \hline \\ & CH_3OH, 4F/mol \\ \hline \end{array} \quad \text{MeO}_2C\text{-}(CH_2)_{n+2}\text{-}CO_2Et}$$

Furthermore, efficient synthesis of a variety of glutamate derivatives (9a-d) was accomplished by the present anodic deacetylation of the α -substituted acetoacetates (8a-d), prepared readily by base-catalyzed conjugate addition of ethyl acetoacetate to $\alpha, \ \beta$ -unsaturated olefins. 11

Table 2. Electrolysis of cyclic β -ketoesters

	n	Supporting Electrolyte	Yield (%)	n	Supporting Electrolyte	Yield (%)
	2	NaCl	52	5	NaBr	59
	3	NaBr	67	9	NaBr	69
	3	NaCl	64	9	NaCl	66
_	4	NaBr	54			

$$\begin{array}{c} \text{CH}_{3}\text{-C}\text{-CH}_{2}\text{CO}_{2}\text{Et} & \begin{array}{c} R^{1} & R^{2} \\ R^{1}\text{CH}\text{-C}\text{-C}\text{-X} \\ \vdots & B \end{array} & \begin{array}{c} R^{1} & R^{2} \\ \text{CH}_{3}\text{-C}\text{-CHCO}_{2}\text{Et} \\ \text{O} & 8a \end{array} \\ \\ & \begin{array}{c} -e \\ \text{CH}_{3}\text{OH} - \text{NaBr} \end{array} & \begin{array}{c} R^{1} & R^{2} \\ \text{CH} - \text{CH} - \text{X} \\ \text{CH}_{2}\text{-CO}_{2}\text{Et} \end{array} & \\ & \begin{array}{c} 8a \end{array} & \\ \end{array} & \begin{array}{c} R^{1} & R^{2} \\ \text{CH}_{3}\text{-C}\text{-CHCO}_{2}\text{Et} \end{array} & \\ & \begin{array}{c} 8a \end{array} & \\ \end{array} & \begin{array}{c} -e \\ \text{CH}_{2}\text{-CO}_{2}\text{Et} \end{array} & \\ & \begin{array}{c} 9a : R^{1} = R^{2} = H, \ X = \text{CO}_{2}\text{Et} \\ \text{9b} : R^{1} = \text{CH}_{3}, \ R^{2} = H, \ X = \text{CO}_{2}\text{Et} \end{array} & \begin{array}{c} \text{(Yield} = 91 \%) \\ \text{9c} : R^{1} = H, \ R^{2} = \text{CH}_{3}, \ X = \text{CO}_{2}\text{Et} \\ \text{9d} : R^{1} = R^{2} = H, \ X = \text{CN} \end{array} & \begin{array}{c} \text{(Yield} = 74 \%) \\ \text{(Yield} = 50 \%) \end{array} \end{array}$$

This work was supported by a Grant-in Aid for Electroorganic Chemistry (No. 05235107) from the Ministry of Education, Science, Sports and Culture, Japan.

References and Notes

- 1 Y. Matsubara, K. Fujimoto, H. Maekawa, and I. Nishiguchi, in print in J. Jpn. Oil Chem. Soc., (YUKAGAKU).
- J. P. Schaefer and J. J. Bloomfield, Org. Reactions, 15, 1 (1967).
- 3 S. Torii, K. Uneyama, and N. Yamasaki, *Bull. Chem. Soc. Jpn.*, **53**, 819 (1980).
- Typical procedure is as follows.: Methyl 2-acetyl-3phenylpropionate (10 mmol) was dissolved in methanol
 (30 ml) containing NaBr (10 mmol) as a supporting
 electrolyte in an undivided cell equipped with carbon rod
 electrodes and was electrolyzed under the constant current
 conditions (Current density 22.8mA•cm-2). After 4F/mol
 electricity was passed, the product was isolated by
 distillation.
- 5 Almost recovery of methyl benzylacetoacetates (1a) on treatment of 1a with EtOH/EtONa denied the possibility of base-catalyzed deacetylation.
- T. Shono, Y. Matsumura, H. Hamaguchi, T. Imanishi, and K. Yoshida, Bull. Chem. Soc. Jpn., 51, 2179 (1978).
- 7 Yields were determined by gas chromatography analysis.
- M. M. Baizer, T. Nonaka, K. Park, Y. Saito, and K. Nobe, J. Appl. Electrochem., 14, 197 (1984).
 H. Maekawa, K. Nakano, T. Hirashima, and I. Nishiguchi, Chem. Lett., 1991, 1661.
- 9 A. P. Krapcho, J. Diamanti, C. Cayen, and R. Bingham, *Org. Synth.*, Coll. Vol. 5, 198 (1973).
- a) K. Sisido, K. Utimoto, and T. Isida, J. Org. Chem., 29, 2781 (1964).
 b) W. L. Meyer, A. P. Lobo, and E. T. Marquis, J. Org. Chem., 30, 181 (1965).
- 11 N. T. Albertson, J. Am. Chem. Soc., 70, 669 (1948).